Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney (2024)

1. Breyer M.D., Harris R.C. Cyclooxygenase 2 and the kidney. Curr Opin Nephrol Hypertens. 2001;10:89–98. [PubMed] [Google Scholar]

2. Hao C.M., Breyer M.D. Physiological regulation of prostaglandins in the kidney. Annu Rev Physiol. 2008;70:357–377. [PubMed] [Google Scholar]

3. Harris R.C., Breyer M.D. Physiological regulation of cyclooxygenase-2 in the kidney. Am J Physiol Renal Physiol. 2001;281:F1–F11. [PubMed] [Google Scholar]

4. Crofford L.J. COX-1 and COX-2 tissue expression: implications and predictions. JRheumatol Suppl. 1997;49:15–19. [PubMed] [Google Scholar]

5. Dubois R.N., Abramson S.B., Crofford L., Gupta R.A., Simon L.S., van de Putte L.B., Lipsky P.E. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–1073. [PubMed] [Google Scholar]

6. Funk C.D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001;294:1871–1875. [PubMed] [Google Scholar]

7. Breyer R.M., Bagdassarian C.K., Myers S.A., Breyer M.D. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001;41:661–690. [PubMed] [Google Scholar]

8. Campean V., Theilig F., Paliege A., Breyer M., Bachmann S. Key enzymes for renal prostaglandin synthesis: site-specific expression in rodent kidney (rat, mouse) Am J Physiol Renal Physiol. 2003;285:F19–F32. [PubMed] [Google Scholar]

9. Smith W.L., Bell T.G. Immunohistochemical localization of the prostaglandin-forming cyclooxygenase in renal cortex. Am J Physiol. 1978;235:F451–F457. [PubMed] [Google Scholar]

10. Komhoff M., Grone H.J., Klein T., Seyberth H.W., Nusing R.M. Localization of cyclooxygenase-1 and -2 in adult and fetal human kidney: implication for renal function. Am J Physiol. 1997;272:F460–F468. [PubMed] [Google Scholar]

11. Therland K.L., Stubbe J., Thiesson H.C., Ottosen P.D., Walter S., Sørensen G.L., Skøtt O., Jensen B.L. Cycloxygenase-2 is expressed in vasculature of normal and ischemic adult human kidney and is colocalized with vascular prostaglandin E2 EP4 receptors. JAm Soc Nephrol. 2004;15:1189–1198. [PubMed] [Google Scholar]

12. Nørregaard R., Jensen B.L., Li C., Wang W., Knepper M.A., Nielsen S., Frøkiær J. COX-2 inhibition prevents downregulation of key renal water and sodium transport proteins in response to bilateral ureteral obstruction. Am J Physiol Renal Physiol. 2005;289:F322–F333. [PubMed] [Google Scholar]

13. Harris R.C. Cyclooxygenase-2 in the kidney. JAm Soc Nephrol. 2000;11:2387–2394. [PubMed] [Google Scholar]

14. Ferguson S., Hebert R.L., Laneuville O. NS-398 upregulates constitutive cyclooxygenase-2 expression in the M-1 cortical collecting duct cell line. JAm Soc Nephrol. 1999;10:2261–2271. [PubMed] [Google Scholar]

15. Nantel F., Meadows E., Denis D., Connolly B., Metters K.M., Giaid A. Immunolocalization of cyclooxygenase-2 in the macula densa of human elderly. FEBS Lett. 1999;457:475–477. [PubMed] [Google Scholar]

16. Fitzpatrick F.A., Soberman R. Regulated formation of eicosanoids. JClin Invest. 2001;107:1347–1351. [PMC free article] [PubMed] [Google Scholar]

17. Langenbach R., Morham S.G., Tiano H.F., Loftin C.D., Ghanayem B.I., Chulada P.C., Mahler J.F., Lee C.A., Goulding E.H., Kluckman K.D., Kim H.S., Smithies O. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell. 1995;83:483–492. [PubMed] [Google Scholar]

18. Morham S.G., Langenbach R., Loftin C.D., Tiano H.F., Vouloumanos N., Jennette J.C., Mahler J.F., Kluckman K.D., Ledford A., Lee C.A., Smithies O. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell. 1995;83:473–482. [PubMed] [Google Scholar]

19. Dinchuk J.E., Car B.D., Focht R.J., Johnston J.J., Jaffee B.D., Covington M.B., Contel N.R., Eng V.M., Collins R.J., Czerniak P.M. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature. 1995;378:406–409. [PubMed] [Google Scholar]

20. Norwood V.F., Morham S.G., Smithies O. Postnatal development and progression of renal dysplasia in cyclooxygenase-2 null mice. Kidney Int. 2000;58:2291–2300. [PubMed] [Google Scholar]

21. Nørregaard R., Madsen K., Hansen P.B., Bie P., Thavalingam S., Frøkiær J., Jensen B.L. COX-2 disruption leads to increased central vasopressin stores and impaired urine concentrating ability in mice. Am J Physiol Renal Physiol. 2011;301:F1303–F1313. [PubMed] [Google Scholar]

22. Yang T., Huang Y.G., Ye W., Hansen P., Schnermann J.B., Briggs J.P. Influence of genetic background and gender on hypertension and renal failure in COX-2-deficient mice. Am J Physiol Renal Physiol. 2005;288:F1125–F1132. [PubMed] [Google Scholar]

23. Park J.Y., Pillinger M.H., Abramson S.B. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol. 2006;119:229–240. [PubMed] [Google Scholar]

24. Yang G., Chen L., Zhang Y., Zhang X., Wu J., Li S., Wei M., Zhang Z., Breyer M.D., Guan Y. Expression of mouse membrane-associated prostaglandin E2 synthase-2 (mPGES-2) along the urogenital tract. Biochim Biophys Acta. 2006;1761:1459–1468. [PubMed] [Google Scholar]

25. Jia Z., Liu G., Downton M., Dong Z., Zhang A., Yang T. mPGES-1 deletion potentiates urine concentrating capability after water deprivation. Am J Physiol Renal Physiol. 2012;302:F1005–F1012. [PMC free article] [PubMed] [Google Scholar]

26. Jania L.A., Chandrasekharan S., Backlund M.G., Foley N.A., Snouwaert J., Wang I.M., Clark P., Audoly L.P., Koller B.H. Microsomal prostaglandin E synthase-2 is not essential for invivo prostaglandin E2 biosynthesis. Prostaglandins Other Lipid Mediat. 2009;88:73–81. [PMC free article] [PubMed] [Google Scholar]

27. Nakatani Y., Hokonohara Y., Kakuta S., Sudo K., Iwakura Y., Kudo I. Knockout mice lacking cPGES/p23, a constitutively expressed PGE2 synthetic enzyme, are peri-natally lethal. Biochem Biophys Res Commun. 2007;362:387–392. [PubMed] [Google Scholar]

28. Kamei D., Yamakawa K., Takegoshi Y., Mikami-Nakanishi M., Nakatani Y., Oh-Ishi S., Yasui H., Azuma Y., Hirasawa N., Ohuchi K., Kawaguchi H., Ishikawa Y., Ishii T., Uematsu S., Akira S., Murakami M., Kudo I. Reduced pain hypersensitivity and inflammation in mice lacking microsomal prostaglandin e synthase-1. JBiol Chem. 2004;279:33684–33695. [PubMed] [Google Scholar]

29. Trebino C.E., Stock J.L., Gibbons C.P., Naiman B.M., Wachtmann T.S., Umland J.P., Pandher K., Lapointe J.M., Saha S., Roach M.L., Carter D., Thomas N.A., Durtschi B.A., McNeish J.D., Hambor J.E., Jakobsson P.J., Carty T.J., Perez J.R., Audoly L.P. Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc Natl Acad Sci U S A. 2003;100:9044–9049. [PMC free article] [PubMed] [Google Scholar]

30. Hebert R.L., Jacobson H.R., Breyer M.D. PGE2 inhibits AVP-induced water flow in cortical collecting ducts by protein kinase C activation. Am J Physiol. 1990;259:F318–F325. [PubMed] [Google Scholar]

31. Sonnenburg W.K., Smith W.L. Regulation of cyclic AMP metabolism in rabbit cortical collecting tubule cells by prostaglandins. JBiol Chem. 1988;263:6155–6160. [PubMed] [Google Scholar]

32. Nadler S.P., Zimpelmann J.A., Hebert R.L. PGE2 inhibits water permeability at a post-cAMP site in rat terminal inner medullary collecting duct. Am J Physiol. 1992;262:F229–F235. [PubMed] [Google Scholar]

33. Zelenina M., Christensen B.M., Palmer J., Nairn A.C., Nielsen S., Aperia A. Prostaglandin E(2) interaction with AVP: effects on AQP2 phosphorylation and distribution. Am J Physiol Renal Physiol. 2000;278:F388–F394. [PubMed] [Google Scholar]

34. Tamma G., Wiesner B., Furkert J., Hahm D., Oksche A., Schaefer M., Valenti G., Rosenthal W., Klussmann E. The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. JCell Sci. 2003;116:3285–3294. [PubMed] [Google Scholar]

35. Sugawara M., Hashimoto K., Ota Z. Involvement of prostaglandin E2, cAMP, and vasopressin in lithium-induced polyuria. Am J Physiol. 1988;254:R863–R869. [PubMed] [Google Scholar]

36. Moses A.M., Scheinman S.J., Schroeder E.T. Antidiuretic and PGE2 responses to AVP and dDAVP in subjects with central and nephrogenic diabetes insipidus. Am J Physiol. 1985;248:F354–F359. [PubMed] [Google Scholar]

37. Kotnik P., Nielsen J., Kwon T.H., Krzisnik C., Frøkiær J., Nielsen S. Altered expression of COX-1, COX-2, and mPGES in rats with nephrogenic and central diabetes insipidus. Am J Physiol Renal Physiol. 2005;288:F1053–F1068. [PubMed] [Google Scholar]

38. Libber S., Harrison H., Spector D. Treatment of nephrogenic diabetes insipidus with prostaglandin synthesis inhibitors. JPediatr. 1986;108:305–311. [PubMed] [Google Scholar]

39. Pattaragarn A., Alon U.S. Treatment of congenital nephrogenic diabetes insipidus by hydrochlorothiazide and cyclooxygenase-2 inhibitor. Pediatr Nephrol. 2003;18:1073–1076. [PubMed] [Google Scholar]

40. Usberti M., Dechaux M., Guillot M., Seligmann R., Pavlovitch H., Loirat C., Sachs C., Broyer M. Renal prostaglandin E2 in nephrogenic diabetes insipidus: effects of inhibition of prostaglandin synthesis by indomethacin. JPediatr. 1980;97:476–478. [PubMed] [Google Scholar]

41. Jackson B.A. Renal prostaglandin E2 synthesis in the Brattleboro hom*ozygous diabetes insipidus rat. Prostaglandins Leukot Med. 1986;22:101–110. [PubMed] [Google Scholar]

42. Breyer M.D., Breyer R.M. Gprotein-coupled prostanoid receptors and the kidney. Annu Rev Physiol. 2001;63:579–605. [PubMed] [Google Scholar]

43. Breyer M.D., Zhang Y., Guan Y.F., Hao C.M., Hebert R.L., Breyer R.M. Regulation of renal function by prostaglandin E receptors. Kidney Int Suppl. 1998;67:S88–S94. [PubMed] [Google Scholar]

44. Breyer M.D., Breyer R.M. Prostaglandin E receptors and the kidney. Am J Physiol Renal Physiol. 2000;279:F12–F23. [PubMed] [Google Scholar]

45. Kennedy C.R., Xiong H., Rahal S., Vanderluit J., Slack R.S., Zhang Y., Guan Y., Breyer M.D., Hebert R.L. Urine concentrating defect in prostaglandin EP1-deficient mice. Am J Physiol Renal Physiol. 2007;292:F868–F875. [PubMed] [Google Scholar]

46. Hebert R.L., Jacobson H.R., Fredin D., Breyer M.D. Evidence that separate PGE2 receptors modulate water and sodium transport in rabbit cortical collecting duct. Am J Physiol. 1993;265:F643–F650. [PubMed] [Google Scholar]

47. Stock J.L., Shinjo K., Burkhardt J., Roach M., Taniguchi K., Ishikawa T., Kim H.S., Flannery P.J., Coffman T.M., McNeish J.D., Audoly L.P. The prostaglandin E2 EP1 receptor mediates pain perception and regulates blood pressure. JClin Invest. 2001;107:325–331. [PMC free article] [PubMed] [Google Scholar]

48. Olesen E.T., Rutzler M.R., Moeller H.B., Praetorius H.A., Fenton R.A. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc Natl Acad Sci USA. 2011;108:12949–12954. [PMC free article] [PubMed] [Google Scholar]

49. Maeda Y., Terada Y., Nonoguchi H., Knepper M.A. Hormone and autacoid regulation of cAMP production in rat IMCD subsegments. Am J Physiol. 1992;263:F319–F327. [PubMed] [Google Scholar]

50. Olesen E.T., Fenton R.A. Is there a role for PGE2 in urinary concentration? JAm Soc Nephrol. 2013;24:169–178. [PubMed] [Google Scholar]

51. Knepper M.A., Kwon T.H., Nielsen S. Molecular physiology of water balance. NEngl J Med. 2015;372:1349–1358. [PMC free article] [PubMed] [Google Scholar]

52. Klahr S. Obstructive nephropathy. Intern Med. 2000;39:355–361. [PubMed] [Google Scholar]

53. Carlsen I., Donohue K.E., Jensen A.M., Selzer A.L., Chen J., Poppas D.P., Felsen D., Frøkiær J., Nørregaard R. Increased cyclooxygenase-2 expression and prostaglandin E2 production in pressurized renal medullary interstitial cells. Am J Physiol Regul Integr Comp Physiol. 2010;299:R823–R831. [PMC free article] [PubMed] [Google Scholar]

54. Nilsson L., Madsen K., Topcu S.O., Jensen B.L., Frøkiær J., Nørregaard R. Disruption of cyclooxygenase-2 prevents down-regulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse. Am J Physiol Renal Physiol. 2012;302:F1430–F1439. [PubMed] [Google Scholar]

55. Nørregaard R., Jensen B.L., Topcu S.O., Diget M., Schweer H., Knepper M.A., Nielsen S., Frøkiær J. COX-2 activity transiently contributes to increased water and NaCl excretion in the polyuric phase after release of ureteral obstruction. Am J Physiol Renal Physiol. 2007;292:F1322–F1333. [PubMed] [Google Scholar]

56. Nørregaard R., Jensen B.L., Topcu S.O., Wang G., Schweer H., Nielsen S., Frøkiær J. Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1017–R1025. [PMC free article] [PubMed] [Google Scholar]

57. Ostergaard M., Christensen M., Nilsson L., Carlsen I., Frøkiær J., Nørregaard R. ROS dependence of cyclooxygenase-2 induction in rats subjected to unilateral ureteral obstruction. Am J Physiol Renal Physiol. 2014;306:F259–F270. [PubMed] [Google Scholar]

58. Yang C., Nilsson L., Cheema M.U., Wang Y., Frøkiær J., Gao S., Kjems J., Nørregaard R. Chitosan/siRNA nanoparticles targeting cyclooxygenase type 2 attenuate unilateral ureteral obstruction-induced kidney injury in mice. Theranostics. 2015;5:110–123. [PMC free article] [PubMed] [Google Scholar]

59. Chou S.Y., Cai H., Pai D., Mansour M., Huynh P. Regional expression of cyclooxygenase isoforms in the rat kidney in complete unilateral ureteral obstruction. JUrol. 2003;170:1403–1408. [PubMed] [Google Scholar]

60. Cheng X., Zhang H., Lee H.L., Park J.M. Cyclooxygenase-2 inhibitor preserves medullary aquaporin-2 expression and prevents polyuria after ureteral obstruction. JUrol. 2004;172:2387–2390. [PubMed] [Google Scholar]

61. Whinnery M.A., Shaw J.O., Beck N. Thromboxane B2 and prostaglandin E2 in the rat kidney with unilateral ureteral obstruction. Am J Physiol. 1982;242:F220–F225. [PubMed] [Google Scholar]

62. Yarger W.E., Schocken D.D., Harris R.H. Obstructive nephropathy in the rat: possible roles for the renin-angiotensin system, prostaglandins, and thromboxanes in postobstructive renal function. JClin Invest. 1980;65:400–412. [PMC free article] [PubMed] [Google Scholar]

63. Honma S., Shinohara M., Takahashi N., Nakamura K., Hamano S., Mitazaki S., Abe S., Yoshida M. Effect of cyclooxygenase (COX)-2 inhibition on mouse renal interstitial fibrosis. Eur J Pharmacol. 2014;740:578–583. [PubMed] [Google Scholar]

64. Miyajima A., Ito K., Asano T., Seta K., Ueda A., Hayakawa M. Does cyclooxygenase-2 inhibitor prevent renal tissue damage in unilateral ureteral obstruction? JUrol. 2001;166:1124–1129. [PubMed] [Google Scholar]

65. Nakagawa N., Yuhki K., Kawabe J., Fujino T., Takahata O., Kabara M., Abe K., Kojima F., Kashiwagi H., Hasebe N., Kikuchi K., Sugimoto Y., Narumiya S., Ushikubi F. The intrinsic prostaglandin E2-EP4 system of the renal tubular epithelium limits the development of tubulointerstitial fibrosis in mice. Kidney Int. 2012;82:158–171. [PubMed] [Google Scholar]

66. Chertow G.M., Burdick E., Honour M., Bonventre J.V., Bates D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. JAm Soc Nephrol. 2005;16:3365–3370. [PubMed] [Google Scholar]

67. Kwon T.H., Frøkiær J., Fernandez-Llama P., Knepper M.A., Nielsen S. Reduced abundance of aquaporins in rats with bilateral ischemia-induced acute renal failure: prevention by alpha-MSH. Am J Physiol. 1999;277:F413–F427. [PubMed] [Google Scholar]

68. Kwon T.H., Frøkiær J., Han J.S., Knepper M.A., Nielsen S. Decreased abundance of major Na(+) transporters in kidneys of rats with ischemia-induced acute renal failure. Am J Physiol Renal Physiol. 2000;278:F925–F939. [PubMed] [Google Scholar]

69. Regel G., Grotz M., Weltner T., Sturm J.A., Tscherne H. Pattern of organ failure following severe trauma. World J Surg. 1996;20:422–429. [PubMed] [Google Scholar]

70. Huerta C., Castellsague J., Varas-Lorenzo C., Garcia Rodriguez L.A. Nonsteroidal anti-inflammatory drugs and risk of ARF in the general population. Am J Kidney Dis. 2005;45:531–539. [PubMed] [Google Scholar]

71. Brater D.C. Renal effects of cyclooxygyenase-2-selective inhibitors. JPain Symptom Manage. 2002;23:S15–S20. [PubMed] [Google Scholar]

72. Brater D.C. Effects of nonsteroidal anti-inflammatory drugs on renal function: focus on cyclooxygenase-2-selective inhibition. Am J Med. 1999;107:65S–70S. [PubMed] [Google Scholar]

73. Clive D.M., Stoff J.S. Renal syndromes associated with nonsteroidal antiinflammatory drugs. NEngl J Med. 1984;310:563–572. [PubMed] [Google Scholar]

74. Zhu S.H., Zhou L.J., Jiang H., Chen R.J., Lin C., Feng S., Jin J., Chen J.H., Wu J.Y. Protective effect of indomethacin in renal ischemia-reperfusion injury in mice. JZhejiang Univ Sci B. 2014;15:735–742. [PMC free article] [PubMed] [Google Scholar]

75. Feitoza C.Q., Semedo P., Goncalves G.M., Cenedeze M.A., Pinheiro H.S., Dos Santos O.F., Landgraf R.G., Pacheco-Silva A., Camara N.O. Modulation of inflammatory response by selective inhibition of cyclooxygenase-1 and cyclooxygenase-2 in acute kidney injury. Inflamm Res. 2010;59:167–175. [PubMed] [Google Scholar]

76. Feitoza C.Q., Goncalves G.M., Semedo P., Cenedeze M.A., Pinheiro H.S., Beraldo F.C., Dos Santos O.F., Teixeira V.P., dos Reis M.A., Mazzali M., Pacheco-Silva A., Camara N.O. Inhibition of COX 1 and 2 prior to renal ischemia/reperfusion injury decreases the development of fibrosis. Mol Med. 2008;14:724–730. [PMC free article] [PubMed] [Google Scholar]

77. Feitoza C.Q., Camara N.O., Pinheiro H.S., Goncalves G.M., Cenedeze M.A., Pacheco-Silva A., Santos O.F. Cyclooxygenase 1 and/or 2 blockade ameliorates the renal tissue damage triggered by ischemia and reperfusion injury. Int Immunopharmacol. 2005;5:79–84. [PubMed] [Google Scholar]

78. Feitoza C.Q., Sanders H., Cenedeze M., Camara N.O., Pacheco-Silva A. Pretreatment with indomethacin protects from acute renal failure following ischemia-reperfusion injury. Transplant Proc. 2002;34:2979–2980. [PubMed] [Google Scholar]

79. Jia Z., Wang N., Aoyagi T., Wang H., Liu H., Yang T. Amelioration of cisplatin nephrotoxicity by genetic or pharmacologic blockade of prostaglandin synthesis. Kidney Int. 2011;79:77–88. [PubMed] [Google Scholar]

80. Suleyman B., Albayrak A., Kurt N., Demirci E., Gundogdu C., Aksoy M. The effect of etoricoxib on kidney ischemia-reperfusion injury in rats: a biochemical and immunohistochemical assessment. Int Immunopharmacol. 2014;23:179–185. [PubMed] [Google Scholar]

81. Suleyman Z., Sener E., Kurt N., Comez M., Yapanoglu T. The effect of nimesulide on oxidative damage inflicted by ischemia-reperfusion on the rat renal tissue. Ren Fail. 2015;37:323–331. [PubMed] [Google Scholar]

82. Patel N.S., Cuzzocrea S., Collino M., Chaterjee P.K., Mazzon E., Britti D., Yaqoob M.M., Thiemermann C. The role of cyclooxygenase-2 in the rodent kidney following ischaemia/reperfusion injury invivo. Eur J Pharmacol. 2007;562:148–154. [PubMed] [Google Scholar]

83. Hwang H.S., Yang K.J., Park K.C., Choi H.S., Kim S.H., Hong S.Y., Jeon B.H., Chang Y.K., Park C.W., Kim S.Y., Lee S.J., Yang C.W. Pretreatment with paricalcitol attenuates inflammation in ischemia-reperfusion injury via the up-regulation of cyclooxygenase-2 and prostaglandin E2. Nephrol Dial Transplant. 2013;28:1156–1166. [PubMed] [Google Scholar]

84. Ranganathan P.V., Jayakumar C., Mohamed R., Dong Z., Ramesh G. Netrin-1 regulates the inflammatory response of neutrophils and macrophages, and suppresses ischemic acute kidney injury by inhibiting COX-2-mediated PGE2 production. Kidney Int. 2013;83:1087–1098. [PMC free article] [PubMed] [Google Scholar]

Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney (2024)

References

Top Articles
Latest Posts
Article information

Author: Lilliana Bartoletti

Last Updated:

Views: 6502

Rating: 4.2 / 5 (53 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Lilliana Bartoletti

Birthday: 1999-11-18

Address: 58866 Tricia Spurs, North Melvinberg, HI 91346-3774

Phone: +50616620367928

Job: Real-Estate Liaison

Hobby: Graffiti, Astronomy, Handball, Magic, Origami, Fashion, Foreign language learning

Introduction: My name is Lilliana Bartoletti, I am a adventurous, pleasant, shiny, beautiful, handsome, zealous, tasty person who loves writing and wants to share my knowledge and understanding with you.